Contribution of parvalbumin and somatostatin-expressing GABAergic neurons to slow oscillations and the balance in beta-gamma oscillations across cortical layers

نویسندگان

  • Toshinobu Kuki
  • Kazuyuki Fujihara
  • Hideki Miwa
  • Nobuaki Tamamaki
  • Yuchio Yanagawa
  • Hajime Mushiake
چکیده

Cortical interneurons are classified into several subtypes that contribute to cortical oscillatory activity. Parvalbumin (PV)-expressing cells, a type of inhibitory interneuron, are involved in the gamma oscillations of local field potentials (LFPs). Under ketamine-xylazine anesthesia or sleep, mammalian cortical circuits exhibit slow oscillations in which the active-up state and silent-down state alternate at ~1 Hz. The up state is composed of various high-frequency oscillations, including gamma oscillations. However, it is unclear how PV cells and somatostatin (SOM) cells contribute to the slow oscillations and the high-frequency oscillations nested in the up state. To address these questions, we used mice lacking glutamate decarboxylase 67, primarily in PV cells (PV-GAD67 mice) or in SOM cells (SOM-GAD67 mice). We then compared LFPs between PV-GAD67 mice and SOM-GAD67 mice. PV cells target the proximal regions of pyramidal cells, whereas SOM cells are dendrite-preferring interneurons. We found that the up state was shortened in duration in the PV-GAD67 mice, but tended to be longer in SOM-GAD67 mice. Firing rate tended to increase in PV-GAD67 mice, but tended to decrease in SOM-GAD67 mice. We also found that delta oscillations tended to increase in SOM-GAD67 mice, but tended to decrease in PV-GAD67 mice. Current source density and wavelet analyses were performed to determine the depth profiles of various high-frequency oscillations. High gamma and ripple (60-200 Hz) power decreased in the neocortical upper layers specifically in PV-GAD67 mice, but not in SOM-GAD67. In addition, beta power (15-30 Hz) increased in the deep layers, specifically in PV-GAD67 mice. These results suggest that PV cells play important roles in persistence of the up state and in the balance between gamma and beta bands across cortical layers, whereas SOM and PV cells may make an asymmetric contribution to regulate up-state and delta oscillations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some heightened sensitivity.

Slowing of the hippocam-pal θ rhythm correlates with anesthetic-induced amnesia. Differential effects of isoflur-ane on high-frequency and low-frequency γ oscillations in the cerebral cortex and hippocampus in freely moving rats. A. High-frequency gamma oscillations and human brain mapping with electrocortico-graphy. Homeostatic control of slow-wave and spindle frequency activity during human s...

متن کامل

Layer-Specific GABAergic Control of Distinct Gamma Oscillations in the CA1 Hippocampus

The temporary interaction of distinct gamma oscillators effects binding, association, and information routing. How independent gamma oscillations are generated and maintained by pyramidal cells and interneurons within a cortical circuit remains unknown. We recorded the spike timing of identified parvalbumin-expressing basket cells in the CA1 hippocampus of anesthetized rats and simultaneously d...

متن کامل

Altered GABAA,slow inhibition and network oscillations in mice lacking the GABAA receptor beta3 subunit.

Phasic GABAergic inhibition in hippocampus and neocortex falls into two kinetically distinct categories, GABA(A,fast) and GABA(A,slow). In hippocampal area CA1, GABA(A,fast) is generally believed to underlie gamma oscillations, whereas the contribution of GABA(A,slow) to hippocampal rhythms has been speculative. Hypothesizing that GABA(A) receptors containing the beta(3) subunit contribute to G...

متن کامل

POm Thalamocortical Input Drives Layer-Specific Microcircuits in Somatosensory Cortex.

Higher-order thalamic nuclei, such as the posterior medial nucleus (POm) in the somatosensory system or the pulvinar in the visual system, densely innervate the cortex and can influence perception and plasticity. To systematically evaluate how higher-order thalamic nuclei can drive cortical circuits, we investigated cell-type selective responses to POm stimulation in mouse primary somatosensory...

متن کامل

A neural circuit for gamma-band coherence across the retinotopic map in mouse visual cortex

Cortical gamma oscillations have been implicated in a variety of cognitive, behavioral, and circuit-level phenomena. However, the circuit mechanisms of gamma-band generation and synchronization across cortical space remain uncertain. Using optogenetic patterned illumination in acute brain slices of mouse visual cortex, we define a circuit composed of layer 2/3 (L2/3) pyramidal cells and somatos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2015